Seite 1/1 Planungshilfe: Notentwässerung auf Flachdächern

Alle Angaben sind Richtwerte! Die b/s/t GmbH behält sich das Recht auf technische Änderungen vor. Sonderanfertigungen sind vom Umtausch ausgeschlossen.

Zur Bemessung des Notüberlaufsystems ist es notwendig, die Regenwasser-Druckhöhe $h_{\rm N}$ im Notüberlauf anzugeben.

Der Wert h_N ergibt sich als Differenz der maximalen Überflutungshöhe h_{max} und der erforderlichen Druckhöhe h_G an den Dacheinläufen des Standard-Entwässerungssystems: h_N = hmax - h_G Der Wert h_{max} der maximalen Überflutungshöhe ist mit dem Tragwerkplaner abzustimmen. Der Wert sollte mindestens der anzusetzenden Schneelast vor Ort entsprechen.

Beispiel:

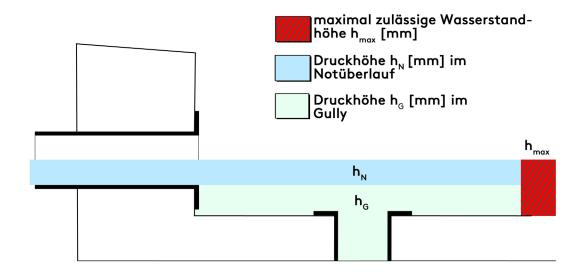
Bei Trapezblechdächern in Schneelastzone 2 beträgt der Schneelastwert mindestens 0,68 kN/m², was einer maximalen Überflutungshöhe h_{max} von 68mm entspricht.

Die erforderliche Stauhöhe h_G an den Dacheinläufen des Entwässerungssystems (siehe DIN 1986-100:2008-05, Tabelle 10) bestimmt auch die Einbauhöhe des Notüberlaufs.

Bei einem Dacheinlauf DN 100 beträgt die erforderliche Druckhöhe h_g = 35mm.

Die untere Einlaufkante des Notüberlaufs sollte hier also oberhalb von 35mm über der wasserführenden Schicht liegen. Die Druckhöhe h_N im Notüberlauf beträgt folglich h_N = 68mm - 35mm = 33mm

$$h_N = h_{max} - h_G$$


h_{max} [mm] : maximale Überflutungshöhe auf der Dachfläche im Bereich der Abläufe

 $\rm h_{_{G}}$ [mm] : Regenwasser-Druckhöhe am Dachgully, verursacht durch Normalregenspende $\rm r_{_{5/5}}$

[l/s/ha]

 $h_{_{
m N}}$ [mm] : Regenwasser-Druckhöhe am Notüberlauf, verursacht durch Jahrhundertregen $r_{_{
m 5/100}}$

[l/s/ha] abzüglich Normalregen

